
©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 1 DRAFT

Figure 1:
Typical circuit connec-
tion includes protection
resistors on 5 inputs,
pullup resistors on the
data and c4 lines, and
a power supply bypass
capacitor. Internal
pullup resistors are
enabled on lines c0 to
c3. The CT515 can
operate on power from
3.0 to 5.3 volts, at 10
µA sleep, 1.2 mA max.
8 pin dip or narrow soic.
The communication
intereface is one single
line of 5 volt level
RS232.

CT515 counter debouncer
EME Systems
www.emesystems.com

The CT515 is a counter/debouncer integrated circuit that
adds 5 counter input channels to the OWL2pe, BASIC Stamp
or other microcontroller system. The 5 channels can be used
to monitor rain gages, anemometers, flow meters, traffic
counters, or any such device that closes a switch or generates a pulse to signal events at
a low rate (less than 100 Hertz). The CT515 can monitor and count on all 5 of its
inputs simultaneously and continuously. At intervals the microcontroller will read out
the number of events that have occurred on each channel during the preceding interval.
Each counter is a word value, up to 65535, which is then reset to zero after the counter
is read out.

The CT515 also acts as a debouncer. Mechanical switches tend to bounce when they
close and also when they open, generating multiple high/low transitions at the input.
The bouncing can last for several milliseconds. The CT515 reads the inputs repeatedly
at 1 millisecond intervals and requires 5 readings in succession to have the same value
before it is registered as a stable level to be counted. The CT515 by default debounces
both the falling and rising edges, and advances the count on the falling edge of the
debounced input. Due to the debouncing, the maximum frequency that can be detected
by the CT515 is 100 Hertz, corresponding to a square wave of 5 milliseconds high and 5
milliseconds low. That is adequate for a typical anemometer, which produces a maxi-
mum frequency of around 60 Hertz.

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 2 DRAFT

The CT515 provides internal pullup resistors for each switch (except for counter num-
ber c4, which require an external pullup). The internal pullups are approximately 20
kohms each, so a closed switch input will draw 250 microamps. It is possible to use a
transistor switch, or external logic that provides a 5 volt square wave signal instead of a
switch to ground. It is advisable to include a small series resistor at each pin, shown
as 330Ω in the diagram, in order to limit possible fault currents. Do not use a resistor
greater than 1000Ω.

The CT515 operates at low power, sleeping much of the time at 10 microamps. (Not
including pullup current) It wakes
up instantly (<1 ms) when an event
occurs and stays awake until it
again detects a stable condition on
all inputs. Even in full active oper-
ation, it only draws 1.2 milliamps.

The CT515 is connected to the
OWL2pe/BASIC Stamp via a single
pin. OWL2pe top boards make this
connection via pin P9, and the
example programs below refer to
that pin. (www.owlogic.com) But it
can use any pin capable of TTL
level RS232. The data pin to the
microcontroller has a 20kΩ pullup resistor, which is required. The 330Ω isolation resis-
tor is also recommended. Data is transferred at 9600 baud True (It rests at high level, 5
volts, and goes low zero volts for the start bit.)

When a program needs to read the counters, it brings the data pin low for at least 10
milliseconds, and then releases it to the high level. The CT515, after a 3ms delay to
allow the Stamp to prepare, sends back an ascii string (ttl level rs232). The string
consists of ascii $80 followed by a byte that contains the immediate state of the 5 inputs,
and then 5 binary counter word values, each sent least significant byte first. The bytes
are paced, one millisecond apart. After the CT515 sends out this string, it resets all of
the counters to zero.

The initial $80 character can also be viewed as a low going pulse, 833 microseonds in
duration. That is the proper value for the character $80 sent at exactly 9600 baud (one
start bit + 7 low data bits = 8 * 1/9600 = 0.000833). That pulse duration can be used as
a check on the CT515 baud rate, especially at extremes of temperature. The third pro-
gram below illustrates how this is done on a BASIC Stamp using the PULSIN command.

Figure 2:
The photo shows the CT515
in the 8 pin soic package
mounted on a circuit board.
The components around it
on the board are the bypass
capacitor, the pullup resistor
for the data line, and the
protection resistors in an
array package. The inputs
lead to Phoenix terminals on
the other side of the circuit
board.

$80

cwv cww cwx cwy cwz

lsb msb lsb msb lsb msb lsb msb lsb msb$xx

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 3 DRAFT

It is up to the OWL2pe or Stamp to totalize the values it receives from the CT515. For
rain gages and traffic counters, it will totalize the count through time, while for other
devices such as anemometers, it will divide by the time interval, to track quantities such
as instantaneous, average or maximum rate or velocity.

Example OWL2pe/BASIC Stamp programs.

Example 1: The data can be captured into 5 word variables as follows. This program can
also be used to demo and test the operation of the counters.

‘ acquire counts from 5 channels
‘ and display on debug screen

cwv VAR Word ‘ 5 words to hold the count data
cww VAR Word
cwx VAR Word
cwy VAR Word
cwz VAR Word
cwv0 VAR wv.BYTE0 ‘ byte alias for first byte, for SERIN
cwd VAR Word ‘ word to hold duration of header pulse
xx VAR Byte ‘ byte to hold current state of CT515 pins
idx VAR byte
goCountPin PIN 9
sbaud CON $54 ‘ 9600 baud for BS2, BS2e and BS2pe

main:
DO

GOSUB go_count
DEBUG CR, DEC cwd*2, TAB, BIN6 xx
FOR idx=0 TO 4 : DEBUG TAB, DEC cwx(idx) : NEXT

LOOP

go_count:
LOW goCountPin ‘ get attention of CT515
PAUSE 10
INPUT goCountPin ‘ pullup resistor pulls the pin high
PULSIN goCountPin,0,cwd ‘ header pulse duration
SERIN goCountPin,$54,100,noData,[xx,STR cwv0\10]

noData:
RETURN

The SERIN command in this syntax, using the STR modifier, will put the 5 counter
results in the 5 words, cwv to cwz, so the program can subsequently display them and
do calculations and take other actions. The PULSIN command measures the duration
of the initial 1-0-1 pulse returned by the CT515. This is also the ascii character, $80,
but it is more informative for testing purposes to measure and display the duration of
the pulse. It should be close to 834 microseconds. The value returned by PULSIN is

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 4 DRAFT

multiplied times 2, because PULSIN returns its measurements in units of 2 microsec-
onds (…that is on the Stamp BS2, BS2e and BS2pe, different on the other Stamps).
The SERIN command first acquires the value xx, which shows the current state of all
the pins on the CT515, at a point in time. DEBUG displays the value as binary, so you
can see the individual key states as open=1 and closed=0. The values will be normally
all high, but as switches are pressed, zeros will appear in the corresponding bit position.
The counters should increment on every 0->1 transition.

Example 2: This version uses a 10 byte buffer at the top of the Stamp scratchpad mem-
ory, available in the BS2pe, BS2p, BS2px, BS2sx and BS2e. The data from the CT515
is read into this buffer by the following subroutine.

‘ acquire counts from 5 channels
‘ and display on debug screen
go_count:

LOW goCountPin
PAUSE 10
INPUT goCountPin ‘ pullup resistor pulls the pin high
SERIN goCountPin,$54,100,noData,[WAIT ($80),xx,SPSTR 10]
RETURN

Observe that this routine uses a WAIT command to detect the initial pulse, instead of
the PULSIN command. SPSTR 10 puts the ten following bytes into the scratchpad
memory starting at scratchpad address 0. The main loop of a data logging program can
retrieve the individual counts from the scratchpad RAM .

GET 0, Word variable0
GET 2, Word variable1
‘ and so on

The main program loop will call the subroutine periodically. This can be done in tight
synchronization with the real time clock, and this is the method we usually use with the
OWL2pe data logger. After calling the subroutine at the top of the timing loop, all of
the counter results are held in the scratchpad buffer, and as the main program loop
deals with each sensor in turn, it retrieves the values it needs from the buffer. (see
example 4)

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 5 DRAFT

example 3: This is the same subroutine as in example 1, but this uses the PULSIN
value to calculate the baud rate. Most serial cards can sync correctly to even 5% devia-
tion (100 to 108 microsecond bit period) . This routine should only be necessary at
extremes of temperature, as the chip has a stable oscillator that is calibrated at the time
of manufacture.

cwd VAR word ‘ duration variable
go_count:

LOW goCountPin
PAUSE 10
INPUT goCountPin ‘ pullup resistor pulls the pin high
PULSIN goCountPin, 0, cwd
cwd=cwd*2 MIN 512 MAX 1024 ‘ µseconds (BS2, 2e, 2pe) limits
SERIN goCountPin,cwd/8 - 20,100,noData,[xx,SPSTR 10]
RETURN

cwd cwd/8 cwd/8-20 Stamp baud
800 100 80 10000 baud
834 104 84 9615 baud
864 108 90 9090 baud

Derivation:

Baud rate
= 1/bit period in seconds
= 1000000/(bit period in microseconds)
= 1000000/(cwd/8) as measured by PULSIN, converted to microseconds

Baudmode for Stamp 2, 2e, 2pe, from Stamp manual
= 1000000/baud - 20
= 1000000/(1000000/(cwd/8) - 20
= cwd/8 - 20 where cwd is bit period in microseconds

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 6 DRAFT

example 4: OWL2pe program to read the counter data into a scratchpad buffer at regu-
lar time intervals. The time is read from a DS1307 RTC as it is found on the OWL2pe
data logger. The heartbeat output from the DS1307 is used to synchronize the counter
reading to an exact interval of time, using the POLLWAIT command. In this way, the
counts can be used for calculation of things like windspeed (count/time).

‘ {$STAMP BS2pe}
’ {$PBASIC 2.5}

interval CON 15 ‘ seconds between wakeup scans.

DSpwr PIN 10
DSsda PIN 8
DSsck PIN 9

ct VAR WORD
ww VAR WORD
wx VAR WORD
wy VAR WORD
wz VAR WORD
wj VAR WORD

second VAR ww.BYTE0
minute VAR ww.BYTE1
hour VAR wx.BYTE0
dow VAR wx.BYTE1
day VAR wy.BYTE0
month VAR wy.BYTE1
year VAR wz.BYTE0
heart VAR wz.BYTE1

AUXIO
HIGH DSpwr

I2COUT DSsda,$D0,7,[$10] ‘ activate heartbeat
GOSUB realTime
IF second=$80 THEN I2COUT DSsda,$D0,0,[0] ‘ start RTC

LOW DSpwr
MAINIO

DO
LOW 9 ‘ attention to CT515
PAUSE 10
INPUT 9
SERIN 9,$54,500,noCT515,[WAIT($80),wx,SPSTR 10]
noCT515:
GOSUB realTime ‘ read and display clock time
GOSUB showTime
FOR wj=0 TO 4 ‘ show 5 counter values

GET wj*2, WORD wx
DEBUG TAB, DEC wx

NEXT
GOSUB waiting ‘ sync to interval seconds

LOOP

©200, 2006 eme systems (All rights reserved) http://www.owlogic.com page 7 DRAFT

waiting:
AUXIO
IF wx >4 THEN SLEEP wx-4
IF wx=interval THEN NAP 6
POLLMODE 2
DO

GOSUB secondsRemaining
IF wx = interval THEN POLLMODE 0 : MAINIO : RETURN
POLLIN 15,1
POLLWAIT 3
POLLIN 15,0
POLLWAIT 1

LOOP

secondsRemaining:
’ returns wx=seconds to go in sampling interval, wj=second of hour 0--3559
‘ interval should divide 3600 seconds evenly. Should be auxio on entry & exit

HIGH DSpwr
I2CIN DSsda,$D1,0,[STR second\2] ’ read clock, secs & minutes

LOW DSpwr
wj=minute.NIB1*10+minute.NIB0*6+second.NIB1*10+second.NIB0 ‘0 to 3559

wx = interval - (wj//interval) ’ seconds remaining in interval
RETURN

realTime: ‘ returns RTC
AUXIO
HIGH DSpwr

I2CIN DSsda,$D1,0,[STR second\8] ’ read clock, date & time & heart
LOW DSpwr
MAINIO
RETURN

showRTC:
DEBUG “20",HEX2 year,”/“,HEX2 month,”/“,HEX2 day,32
DEBUG HEX2 hour,”:“,HEX2 minute,”:“,HEX2 second
RETURN

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7

